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ABSTRACT
Analyzing links among pages from different mobile apps is an

important task of app analysis. Currently, most efforts of analyzing
inter-app page links rely on static program analysis, which pro-
duces a lot of false positives, requiring significant manual effort
to verify the links. To address the issue, in this paper, we propose
LinkRadar, a data-driven approach to assisting the analysis of inter-
app page links. Our key idea is to use dynamic program analysis to
gather a set of actual inter-app page links, based on which we train
a model to predict whether there exist links among pages from
different apps to help verify the results of static program analysis.
The challenge is that inter-app page links are hard to be triggered
by dynamic program analysis, making it difficult to collect enough
inter-app page links to train the model. Considering the similar-
ity between intra-app page links and inter-app page links, we use
transfer learning to deal with the data scarcity problem. Evaluation
results show that LinkRadar is able to infer the inter-app page links
with high accuracy.
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1 INTRODUCTION
Pages from different mobile apps are sometimes linked with

each other to provide additional services for mobile users [7, 10].
For example, a hotel page from a travel app may contain a phone
number of the hotel, and such a page may be linked with the dialing
page of the Skype app for users to call the hotel. Analyzing such
inter-app page links is an important task of app analysis, since
these links may have potential vulnerabilities, such as malicious
data access, sensitive data theft, and privilege-escalation attacks.

Currently, most efforts of analyzing inter-app page links rely
on static program analysis, which analyzes the source code or
bytecode of apps to extract inter-component communication among
different apps for link detection. However, it is reported that these
approaches suffer from large amount of false positives, meaning
that many links reported by the static analysis do not exist in fact [8].
So it requires significant manual effort to verify the analysis results.

To address the issue, in this paper, we propose LinkRadar, a data
driven approach to assisting the analysis of inter-app page links.
For apps under analysis, we adopt dynamic program analysis to
obtain a set of actual inter-app page links, based on which we train
a model to infer inter-app page links among other pages. In the
training process, we first extract features of app pages to learn
their low-dimensional representations. These representations are
then integrated to estimate the likelihood of the existence of a link
between app pages.

However, it is challenging for dynamic analysis tools to get
enough samples of inter-app page links.The reason is that in order
to trigger an inter-app page link, dynamic analysis tools have to
reach certain positions in an app and perform specific actions on
certain UI elements, which cannot be afforded by state-of-the-art
dynamic analysis tools. So it is hard learn the patterns of inter-app
page links directly. We notice the similarities between intra-app
and inter-app page links. Therefore, we pre-train our model with a
large amount of intra-app page links and then fine tune this model
with small number of inter-app page links. Our learning framework
has the following major traits:

• Data-driven approach to assisting inferring inter-app
page link. There have been lots of studies on app analysis,
but to the best of our knowledge, we are the first to assist
static analysis tools to infer inter-app page links with data-
driven method.

• Transfer learning. Inter-app page links are difficult to col-
lect. So it can be difficult to learn from these inter-app links
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Figure 1: Schematic overview of LinkRadar

directly. We leverage intra-app link inference task for trans-
fer learning, to deal with low-resource setting.

• Low-dimensional vector embedding of app pages. In-
stead of extracting features from developers’ hard-coded
logic, we use a contextualized and hybrid page encoder to
generate embeddings that can represent app pages.

We evaluate LinkRadar based on the data collected from 1625
popular Android apps. Results show that LinkRadar is able to infer
inter-app page links with high accuracy, demonstrating the effec-
tiveness of LinkRadar on assisting the static program analysis of
inter-app page links.

2 PROPOSED METHOD
In order to verify the inter-app page links reported by static pro-

gram analysis tools, we propose to use dynamic program analysis
tools to execute the apps under analysis, collecting actual inter-app
page links, based on which we train a model to infer whether there
exist inter-app page links among other pages that are not covered
by dynamic analysis tools. Therefore, the core part of our method is
how to infer inter-app page links based on the information collected
by dynamic program analysis.

In the following part of this section, we formulate the prediction
problem, describe the model of LinkRadar, and show how we train
our model via transfer learning.

2.1 Problem Definition
Through the paper, the set of app pages, which are the user

interfaces of apps, is denoted as P. An app page pi ∈ P represents
the context of the ith app page in the whole data set, including app
meta data, image information, text information, etc.

Given two app pages from two apps pi , pj ∈ P, we estimate the
probability of the existence of a page link between pi and pj as p(L
= 1 | pi , pj ), where L is a binary variable indicating whether there is
a link between pi and pj (L = 1) or not (L = 0). The link probability
in LinkRadar is estimated as follows:

p(L = 1|p1,p2) = Ψ(ϕ(p1),ϕ(p2)) (1)

Figure 2: Structure of Feature Extractor

where ϕ denotes the app page embedding component and Ψ is an
app link inference component that takes the two pages’ embedding
and generates an app link inference score. The score indicates how
likely it is that there is an app link between p1 and p2.

To make a better use of app pages’ structural feature, we build
an app-page graph with app pages as nodes and page links as edges.
For a certain app page, the app pages that have links with that page
are the page’s neighbors. We use pairs of app pages as the input of
LinkRadar. To distinguish different types of page pairs, we call two
app pages from the same app an intra-app page pair and two app
pages from different apps an inter-app page pair. Similarly, we have
intra-app page link and inter-app page link.

In the training process of LinkRadar, we first collect app link
information and page information with a dynamic analysis tool.
Then, we train the model of LinkRadar with the data collected.
Figure 1 shows the overview of the training pipeline of LinkRadar,
which can be divided into two processes: pre-training and fine
tuning. The link inference model consists of two parts: the Page
Embedding Model and the Link Inferencer.

2.2 The Link Inference Model
2.2.1 Page Embedding Model. The Page Embedding Model (PEM)
encodes an app page to a vector embedding. Feature Extractor,
which is a neural network, is the core part of PEM. As is shown
in Figure 2, PEM extracts features of app pages to generate an app
page’s embedding vector.

• Screen snapshot: The screen snapshot displays all visible
fragments of the page in one image. It transmits a lot of
information to app users in negligible amount of time. The
Feature Extractor uses one block of DenseNet to get useful
information from these images.

• Text information: Users can easily understand the page’s
content and function by reading the text on screen. To utilize
text information, we segment the text and use a pre-trained
Word2Vec [12] model to create word representations of each
word in an app page. Then, we calculate the average word
embedding to represent the overall meaning of that page.

• Screen layout: In Android apps, each activity manages a
screen of the User Interface and contains a set of UI elements
called widgets. The screen layout is a tree that contains all
the widgets of an app page. App developers can either use
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existing widgets or design their own widgets by extending
View, which is the basic building block for UI components.
Therefore, the name of a widget’s superclass, which we re-
gard as the widget’s "tag", contains information about the
basic function of this widget. Apart from tags, the position
and size of widgets can also describe these elements. We
traverse all widgets on the screen layout of an app page via
in-order tree traversal to generate a widget sequence. We
use one-hot embedding to represent tags and adapt one layer
of LSTM to learn the representation of the widget sequence.

• App Meta Data: App meta data such as app category con-
tains summation information of the app’s function. In PEM,
we use one-hot embeddings to represent categories of apps.

Feature Extractor takes the above features as inputs and outputs
a page embedding. Notice that normally the feature information of
a node is highly related to its neighbors in a graph. Motivated by
GraphSAGE [5, 6], we combine an app page’s embeddings given
by Feature Extractor and its neighbors’ embedding to aggregate a
final representation of the app page. We useN : v→ 2v to represent
the neighborhood function. In LinkRadar, where neighborhood
information is only additional to the feature of a node, a simple
aggregator like Mean Aggregator is effective enough for PEM.

Given an app page pi ∈ P, hpi represents the embedding given
by Feature Extractor.Mean Aggregator takes the element-wise mean
of the vectors in {hpj , ∀pj∈N (pi )}. The final embedding of pi can
be generated by the following:

ϕ(pi ) = CONCAT (hpi ,MEAN (hpj ,pj ∈ N(pi ))) (2)

The adoption of inducting features from neighborhood improves
the performance of LinkRadar greatly (see Section 3.3).

2.2.2 Link Inferencer. Motivated by neural tensor network (NTN) [14],
we build a module called Link Inferencer to explore the relation-
ship between representation pairs given by PEM. Comparing to
traditional methods, NTN provides a more powerful way to model
relational information.

Given two app pages pi , pj ∈ P, Link Inferencer computes a
score of how likely it is that two pages are in a certain relationship
by the following NTN-based function:

Ψ(ϕ(pi ),ϕ(pj )) = u
T
R f (ϕ(pi )

TW
[1:k]
R ϕ(pj ) +VR

[
ϕ(pi )
ϕ(pj )

]
+ bR ) (3)

where f = tanh is a standard non-linearity applied element-wise and
W[1:k ]

R ∈Rd×d×k is a tensor. The bilinear tensor productϕ(pi )TW
[1:k ]
R ϕ(pj )

results in a vector d ∈ Rk , where each entry is computed by one slice
m = 1,...,k of the tensor: ϕ(pi )TW

[m]

R ϕ(pj ). The other parameters for
relation R are the standard form of a neural network: VR ∈ Rk×2d

and U ∈ Rk , bR ∈ Rk [14].
The app-page graph is usually sparse, which means there are

far more page pairs without links than page pairs with links in the
graph. To better learn app link patterns from our data set, we apply
the method of negative sampling, by which we sample a few page
pairs without links randomly as a part of the training set.

2.3 Transfer learning
With few inter-app page links and a large amount of intra-app

page links collected, it is difficult to learn the pattern of inter-app

page links directly. However, both inter-app links and intra-app
links connect app pages that are related in content and different in
functions. For example, an app page that provides information of a
hotel can be linked to an app page that contains comments of this
hotel by an intra-app app link. The page can also be linked to a "map
page" from a map app. Both target pages are about the certain hotel
and have a different function from the source page. Considering
this similarity, we transfer the shared knowledge between these
two types of page links to alleviate the data sparsity problem.

As is shown in Figure 1, we first train LinkRadar with large
amounts of page pairs with intra-app links. Then, we transfer what
we learned as initialized weights to learn on the inter-app data. PEM
is always fixed in the process of transfer learning. The parameters
of the Link Inferencer are set trainable to adapt the patterns typical
of inter-app page links.

3 EXPERIMENT RESULT AND ANALYSIS
In this section, we evaluate the performance of LinkRadar in

comparison with baseline models, and analyze the results.

3.1 Data and Baselines
Our data set was collected with the help of a dynamic analysis

tool called Paladin [11]. Paladin systematically explores apps by
sending streams of user events to Android system while extracting
app linkage information and app page information at the same time.
Regarding app pages as "nodes" and user events that trigger page
change as "edges", the app-page graph that describes the linkage
information of apps is formed. Paladin also collects information
such as screen snapshots, text, widget details and so on.We collected
44,308 intra-app page links and 4,279 inter-app page links from 1,625
popular apps on two app marketplaces, Google Play andWandoujia.
We take 70% app pages and their linkage relationship as training
set, 10% app pages and their linkage relationship as validation, and
20% as test set.

We compare our model with three baseline methods: Random
which generates inference scores randomly, LinkRadar-noF which
is trained without fine tuning and LinkRadar-noN which is trained
without neighborhood information.

3.2 Evaluation Method and Evaluation Metrics
We evaluate the effectiveness of LinkRadar with four evaluation

metrics: Precision, Recall, Mean Average Precision (MAP) andMean
Reciprocal Rank (MRR).

Precision and Recall are calculated on the test data set directly.
They mainly evaluate how well the LinkRadar is able to estimate
the relationship between two app pages. Considering that Paladin
cannot collect all the inter-app page link, we choose MAP and MRR
to measure how well LinkRadar can infer missing app page links.

To evaluate whether LinkRadar can be used to assist static anal-
ysis tools, we calculate the MAP and MRR based on the results of
PRIMO [13], which is a state-of-the-art static program analysis tool.
First, we randomly chose 50 app pages as "source pages" and for
each "source", we got a set of "target pages" from the result given
by PRIMO. Then, We manually validated every inter-app link to
see which inter-app links really exist and evaluated LinkRadar on
it. LinkRadar can select a few pages that are most probably linked
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Table 1: Performance Comparison with Baselines

Precision Recall MAP MRR
LinkRadar 0.71 1.00 0.257 0.412
Random 0.07 0.44 0.089 0.103
LinkRadar-NoF 0.33 0.88 0.206 0.253
LinkRadar-NoN 0.32 0.95 0.227 0.280

with the "source pages" from a large number of "targets" given by
PRIMO, meaning that LinkRadar can tell app page linkage relation-
ship more precisely than static analysis tools. MAP and MRR can
be calculated as follows:

MAP =

∑Q
q=1AveP(q)

Q
(4)

MRR =
1
Q

Q∑
i=1

1
ranki

(5)

where Q is the number of source app pages, ranki is the rank
position of the first real target page that LinkRadar predicts to be
linked with the i-th source app page, AveP is the function that
calculates the average precision of the prediction results of one
certain source page.
3.3 Results and Discussion

We evaluate the performance of LinkRadar and study the impact
of neighborhood aggregation.

Overall Performance Comparison: Table 1 lists the perfor-
mance of our proposed method as well as its variations and base-
lines. It can be seen that LinkRadar outperforms all the baselines
by a large margin in terms of all evaluation metrics. This means
LinkRadar can not only infer whether an inter-app link should
exist accurately, but also tend to give page pairs with inter-app
links a high score. We see a 115% relative improvement in terms
of precision and a 62.8% relative improvement in terms of MRR
over LinkRadar-noF. This result suggests that fine tuning the model
with inter-app data enables LinkRadar to capture inter-app page
link patterns in a more generalized way.

Impact of Neighborhood Aggregation: To evaluate the im-
pact of neighborhood aggregation, we compare the performance of
LinkRadar with LinkRadar-noN, which is trained after removing
neighborhood features. We see that in both evaluation metrics, the
performance drops, suggesting that neighborhood contains impor-
tant information of the app pages, and neighborhood aggregation
plays an important role in the final performance of LinkRadar.

4 RELATEDWORK
App link analysis is important to mobile applications analysis.

Inter-Component Communication (ICC) analysis, which is required
to understand how the components of Android applications inter-
act, has been performed in past work. Dynamic analysis [1, 3] has
attempted to enforce security policies related to ICC. Apposcopy [4]
uses static analysis as the basis of a signaturebased malware detec-
tion system.

Recently, more andmore inter-app analysis have been performed.
ComDroid [2] analyzed inter-app communication in Android apps
and discovered inter-app communication vulnerabilities. To better

execute inter-app analysis, Li et. al. [9] proposed ApkCombiner,
which combines different apps into a single apk on which existing
tools can indirectly perform inter-app analysis.

5 CONCLUSION
In this paper, we presented LinkRadar, which infers inter-app

page links with representation learning method and transfer learn-
ing method. LinkRadar learns a representation for app pages, and
then incorporating app page information and neighborhood in-
formation into the model. We trained the model on more than
30,000 app pages collected from 1,625 popular Android apps. Results
showed that LinkRadar is able to capture the patterns of inter-app
page links, outperforming baselines significantly in terms of all
evaluation metrics.

Given the various applications of app link analysis, LinkRadar
can not only be used to help static analysis tools for Android apps,
in the future, it can be applied to detect malicious data access,
sensitive data theft, and privilege-escalation attacks as well.
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